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This paper contributes to the basic fundamental problem of vibration of elastic
homogeneous isotropic beam with general boundary conditions traversed by
moving loads. Closed-form solutions for the response of beams subjected to
a single deterministic moving force are obtained. The moving force is assumed to
move with accelerating, decelerating and constant velocity types of motion. Results
show in detail di!erent cases of boundary conditions, type of motion, and damping.
E!ects of variations of the corresponding parameters on the response of the beams
are studied. Results presented in this paper are readily applicable for further
investigation in this "eld.
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1. INTRODUCTION

This paper is concerned with the transverse vibrations of homogeneous isotropic
Euler}Bernoulli beams with general boundary conditions subjected to a constant
force travelling with di!erent types of motion. This problem is of great fundamental
importance to many researchers because of its wide range of applications in many
branches of engineering. Bridges on which vehicles or trains travel, piping systems
subjected to two-phase #ow, beams subjected to pressure waves, and machining
operations where high axial speed may be employed can be modelled as moving
forces on elastic beams with di!erent boundary conditions. Based on the excellent
book by Fryba [1] and the references therein, di!erent papers that deal with
various aspects of the moving load problem have emerged. Perhaps the most
important aspect of these is the one that deals with the problem from the random or
stochastic point of view due to inherent randomness in material properties, and
nature and speed of the load [1}11]. Other aspects of the moving load problem
may be found, for example, in references [12}15]. The solutions presented in these
papers discuss the moving mass problem [12, 13], the moving load problem on
22-460X/00/020377#12 $30.00/0 ( 2000 Academic Press
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beams resting on elastic foundation [3, 14], and the identi"cation associated with
the moving force problem [15]. In this paper, an attempt is made to address one of
the basic fundamental issues related to the moving load problem. Closed-form
solutions of the deterministic response of Euler}Bernoulli elastic beams with
di!erent boundary conditions subjected to a constant force travelling with
accelerating, decelerating, and constant velocity types of motion are obtained.
Results are presented for di!erent damping cases. Comparisons with known
solutions are also made. This work is considered as a continuation of the work
presented in references [9}11]. The solution presented here is more general than the
one shown in reference [11] in which the solution presented there is applied to
a speci"c random force problem. The results arrived at in this paper are readily
applicable to further studies in this "eld. For example, and as will be seen in
a subsequent paper, the results are used to obtain the random response of the
beams subjected to di!erent random force models and ultimately arrive at better
predictions for the service life of such beams.

2. ANALYTICAL FORMULATION

The problem to be considered is that of transverse vibrations of a uniform elastic
beam of "nite length originally at rest with di!erent classical boundary conditions.
The beam is acted upon by a constant force which moves from left to right in
a uniform accelerating, decelerating, or uniform velocity types of motion. The
problem is governed by the following di!erential equation:
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where EI, k, r
a
, r

i
and l(x, t) denote, respectively, the #exural rigidity of the beam,

the mass per unit length of the beam, the coe$cient of external damping of the
beam, the coe$cient of internal damping of the beam, and the transverse de#ection
of the beam at point x and time t. The load p(x, t) is written as [1]

p(x, t)"d(x!f (t))P
0
, (2)

where d( ) ) denotes the familiar Dirac delta function, P
0

denote the concentrated
force of constant magnitude, and f (t) denotes a function describing the motion of
the force at time t de"ned as
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0
#ct#1

2
at2, (3)

where x
0

is the point of application of the force, c is the initial speed, and a is the
constant acceleration. This function describes a uniform decelerating or
accelerating motion. The uniform velocity type of motion, of course, is given by

f (t)"ct. (4)

In modal form, the transverse de#ection of the beam is written as
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where X
k
(x) are the normal modes of free vibration written as
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where the constants A
k
, B

k
, and C

k
de"ne the shape and amplitude of the beam

vibration. They are evaluated by considering the boundary conditions associated
with each beam. The constant i

k
is the frequency parameter associated with each

beam. Here, the external and internal damping e!ects are assumed to be
proportional, respectively, to the mass and sti!ness properties of the beam. That is,
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where c and b are the proportionality constants. Substituting equations (5), (7), and
(8) into equation (1), considering the orthogonality conditions of the normal modes,
and carrying out the familiar operations, the di!erential equation of the kth mode
of the generalized de#ection or the modal response is expressed as
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are, respectively, the natural circular frequency of the kth mode, the dimensionless
damping ratio of the kth mode, the generalized force of the beam associated with
the kth mode, and the generalized mass of the beam associated with kth mode. By
substituting equation (2) into equation (12) and the result into equation (9) to
obtain:

>G
k
(t)#2u

k
m
k
>Q (t)#u2

k
>
k
(t)"

P
0

m
k

X
k
( f (t)). (14)

The solution of equation (14) may be written as
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(t) is the impulse response function de"ned as
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in which

u
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is the damped circular frequency of the kth mode of the beam. Substituting
equations (3), (6), and (16) into equation (15), carrying out the integration and
substituting the result into equation (5), the de#ection l(x, t) of the beam is obtained
as [16]
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The uniform velocity case does not follow from equation (18) because of the
de"nition of the error function. The response of the uniform velocity case is
obtained, however, by using equation (4) instead of equation (3) and following the
same procedure that lead to equation (18). In this case, the response becomes
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Equations (18) and (20) give in analytical form the response of homogeneous
isotropic damped beams with general boundary conditions subjected to single
deterministic force travelling with di!erent types of motion. The two equations
allow a straightforward evaluation of the response for the case under consideration.
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3. DISCUSSION OF RESULTS

The analysis arrived at in this paper is applied to homogeneous isotropic beams
with the four classical boundary conditions. Hinged}hinged, "xed}"xed, "xed}free,
free}"xed, "xed}hinged, and hinged}"xed beams are used to clarify the results. The
beams are subjected to concentrated constant amplitude loads moving with
uniformly accelerated, decelerated, or uniform velocity types of motion.
Computations and results shown in the paper are obtained by using Mathematica.
At this point, it is worth mentioning that some special cases related to this problem
are presented in reference [1]. In the accelerated motion, a beam at rest is entered
from the left-hand side at point x

0
"0 by a concentrated force P

0
moving

according to equation (3). The motion is assumed to be uniformly accelerated so
that it reaches the speed c at point x"l. The instant t

1
at which the force arrives at

the right-hand side of the beam and the acceleration a are written as

t
1
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2l
c
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c2
2l
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In the decelerated motion, a beam also at rest is entered from the left-hand side at
point x

0
"0 by a concentrated force P

0
moving according to equation (3). The

motion is assumed to be uniformly decelerated so that it stops at the right-hand
side of the beam at point x"l. The instant t

2
at which the force stops and the

deceleration a are written as

t
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In the uniform velocity case, a beam also at rest is entered from the left-hand side at
point x

0
"0 by a concentrated force P

0
moving according to equation (4). The

instant at which the force arrives at the right-hand side of the beam is

t
3
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In the "gures, the dimensionless dynamic de#ection l (x
.!9

, t)/l
0

is shown for all
beams versus the dimensionless time parameter s"t/t

i
. Thus, when s"0, the force

is at the left-hand side of the beam x"0, and when s"1 the force is at the
right-hand side of the beam x"l. Here l

0
and x

.!9
denote the maximum static

de#ection and the point on the beam that corresponds to this de#ection
respectively. The de#ection l(x

.!9
, t) is obtained either from equation (18) or

equation (20). In these "gures, the e!ects of damping and speed are made clear. The
e!ect of damping is represented by the dimensionless damping coe$cient m. Three
values are considered: m"0)0, 0)1, and 0)2. The e!ect of speed is represented by the
dimensionless speed parameter a, which is de"ned as

a"
c
c
cr

, (27)
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where c
cr

is the critical speed, de"ned as [1, 2]
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Results are obtained for a"1)0, 0)5 and 0)25. Figures 1(a}i) show the dimensionless
dynamic de#ection l(x

.!9
, t)/l

0
for the hinged}hinged beam where x
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point of maximum static de#ection, and l
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In all these "gures, three levels of damping: m"0)0, 0)1, 0)2 are presented where
each one of the "gures represents di!erent case and type of motion for the
hinged}hinged beam. Figures 1(a}c) show the dimensionless dynamic de#ection for
three levels of accelerated motion, respectively, a"1)0, 0)5, 0)25. Figures 1(d}f ) and
(g}i) are the same as Figures 1(a}c) but for the decelerated and uniform velocity
types of motion respectively. In these "gures; the e!ect of damping is clear for all
cases where an increase in damping yields, in general, a decrease in the response.
Di!erences in the dynamic de#ections among the accelerated motion, Figures
1(a}c); the decelerated motion, Figures 1(d}f ); and the uniform velocity types of
Figure 1. Dimensionless dynamic de#ection versus the normalized time for a hinged}hinged beam,
(a}c) accelerated motion, (a) a"1)0, (b) a"0)5, (c) a"0)25; (d}f ) decelerated motion, (d) a"1)0,
(e) a"0)5, (f ) a"0)25; (g}i) uniform velocity, (g) a"1)0, (h) a"0)5, (i) a"0)25; (} } }) m"0)2,
() ) ) )) m"0)1, (*) m"0)0.
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motion, Figures 1(g}i); are due to the kinematics involved. It is noticed that the
decelerated motion has a higher dynamic e!ect than either the accelerated or
uniform velocity types of motion. In the accelerated type of motion, it is also
noticed that the maximum dynamic de#ection is reached at much later time than
the other two cases. In a similar manner, Figures 2(a}i) show the dimensionless
dynamic de#ection l(x

.!9
, t)/l

0
for the "xed}"xed beam where x

.!9
"l/2, and l

0
is

the maximum static de#ection de"ned at x
.!9

as

l
0
"

P
0
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192EI
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The accelerated type of motion of this beam, Figures 2(a}c), shows a larger
dimensionless dynamic de#ection than the one of simply supported beam, Figures
1(a}c), for all values of a. A resemblance between the behavior of the two beams is
quite clear in the decelerated type of motion, Figures 1(d}f ) and 2(d}f ). It is noticed
that the dimensionless dynamic de#ection of the "xed}"xed beam is larger than the
one of the simply supported beam for a"0)5 and a"0)25. The opposite is true for
a"1)0. As for the uniform velocity type of motion both beams show similar
behavior except for the case of a"1)0 where it is noticed that the dimensionless
dynamic de#ection of the "xed}"xed beam is smaller than the one of the simply
supported beam, Figure 2(g) and 1(g) respectively. The dimensionless dynamic
de#ection l (x , t)/l for the "xed} free and free}"xed beams are shown in
Figure 2. Dimensionless dynamic de#ection versus the normalized time for a "xed}"xed beam;
(a}c) accelerated motion, (a) a"1)0, (b) a"0)5, (c) a"0)25; (d}f ) decelerated motion, (d) a"1)0,
(e) a"0)5, (f ) a"0)25; (g}i) uniform velocity, (g) a"1)0, (h) a"0)5, (i) a"0)25; (- - - ) m"0)2, () ) ) ))
m"0)1, (**) m"0)0.

.!9 0



Figure 3. Dimensionless dynamic de#ection versus the normalized time for a "xed}free beam; (a}c)
accelerated motion, (a) a"1)0, (b) a"0)5, (c) a"0)25; (d}f ) decelerated motion, (d) a"1)0,
(e) a"0)5, (f ) a"0)25; (g}i) uniform velocity, (g) a"1)0, (h) a"0)5, (i) a"0)25; (- - -) m"0)2, () ) ) ))
m"0)1, (**) m"0)0.
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Figures 3(a}i) and 4(a}i) respectively. The di!erence between the two beams is that
in the former the force enters the beam from the "xed end while in the latter the
force enters the beam from the free end. The results are obtained at the free end
where l

0
is given as

l
0
"

P
0
l3

3EI
. (31)

The cases presented in these two groups of "gures are the same as those presented
in Figures 1(a}i) and 2(a}i). As seen from Figures 3(a}f ) and 4(a}f ) respectively, the
two beams behave in quite an opposite manner for the accelerated and decelerated
types of motion. For example, the maximum value of the dynamic de#ection for the
decelerated type of motion in the case of "xed}free beam and for a"1)0, 0)5;
Figures 3(d}e), is larger than its counterpart of the free}"xed beam (Figures 4(d}e)).
When a"0)25 the maximum value of the dynamic de#ection is smaller in the case
of "xed}free beam (Figure 3(f )), than in the case of free}"xed beam (Figure 4(f )).
The opposite is true for the accelerated type of motion. In the uniform velocity type
of motion, it is clear that the relative dynamic de#ection is higher when the force
enters the beam from the free end (Figures 4(g}i)), than when the force enters the
beam from the "xed end (Figures 3(g}i)). Cases that are shown in Figures
5(a}i)}6(a}i) are the same as those presented Figures 1(a}i)}4(a}i). In Figures 5(a}i),



Figure 4. Dimensionless dynamic de#ection versus the normalized time for a free}"xed beam; (a}c)
accelerated motion, (a) a"1)0, (b) a"0)5, (c) a"0)25; (d}f ) decelerated motion, (d) a"1)0, (e)
a"0)5, (f ) a"0)25; (g}i) uniform velocity, (g) a"1)0, (h) a"0)5, (i) a"0)25; (- - -) m"0)2, () ) ) ))
m"0)1, (**) m"0)0.

Figure 5. Dimensionless dynamic de#ection versus the normalized time for a "xed}hinged beam;
(a}c) accelerated motion, (a) a"1)0, (b) a"0)5, (c) a"0)25; (d}f ) decelerated motion, (d) a"1)0,
(e) a"0)5, (f ) a"0)25; (g}i) uniform velocity, (g) a"1)0, (h) a"0)5, (i) a"0)25; (- - -) m"0)2, () ) ) ))
m"0)1, (**) m"0)0.
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Figure 6. Dimensionless dynamic de#ection versus the normalized time for a hinged}fixed beam;
(a}c) accelerated motion, (a) a"1)0, (b) a"0)5, (c) a"0)25; (d}f ) decelerated motion, (d) a"1)0,
(e) a"0)5, (f ) a"0)25; (g}i) uniform velocity, (g) a"1)0, (h) a"0)5, (i) a"0)25; (- - -) m"0)2,
() ) ) )) m"0)1, (**) m"0)0.
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the dynamic de#ection l(x
.!9

, t)/l
0

is shown for the "xed}pinned beam where
x
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0

is the maximum static de#ection de"ned at x
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Similarities between Figures 5(a}i) and 2(a}i) are clear. Figures 6(a}i) show the
dynamic de#ection l(x

max
, t)/l

0
for the pinned}"xed beam where x

max
"0)45 l, and

l
0

is the maximum static de#ection de"ned at x
max

as

l
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. (33)

Similarities between Figures 6(a}i) and 1(a}i) are also clear.

4. CONCLUSIONS

The deterministic dynamic response for homogeneous isotropic elastic beams
with general classical boundary conditions traversed by a moving constant force
was discussed in detail for di!erent cases. The e!ects of boundary conditions, type
of motion, and damping on the response of the beams were studied. The results
arrived at in this paper are readily applicable to further studies in this "eld.
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